close
標題:

數學知識交流---勾股弦關係

發問:

 

此文章來自奇摩知識+如有不便請留言告知

利用:a = 2pmn, b = p(m2 - n2), c = p(m2 + n2),求出所有包含數201202的勾股數組(三數皆為正整數)。

最佳解答:

a = 2pmn, b=p(m2 - n2), c = p(m2 + n2) 因為 m > n, 若 2pmn = 201202 = 2*29*3469, 則 (p, m, n) . . . . . [ 2pmn, p(m2 - n2), p(m2 + n2)] = (1, 100601, 1) . . [201202, 10120561200, 10120561202] = (1, 3469, 29) . . [201202, 12033120, 12034802] = (29, 3469, 1) . . [201202, 348984840, 348984898] = (3469, 29, 1) . . [201202, 2913960, 2920898] 若 p(m2 - n2) = p(m + n)(m - n) = 201202 = 2*29*3469, 則 (p, m, n) . . . . . [ 2pmn, p(m2 - n2), p(m2 + n2)] = (2, 50301, 50300). [10120561200, 201202, 1012056102] = (2, 1749, 1720) . [ 12033120, 201202, 12034802] 若 p(m2 + n2) = 201202 = 2*29*3469, 則 (p, m, n) . . . . . [ 2pmn, p(m2 - n2), p(m2 + n2)] = (1, 429, 131) . . [112398, 166880, 201202] = (1, 401, 201) . . [161202, 120400, 201202] = (2, 280, 149) . . [166880, 112398, 201202] = (2, 301, 100) . . [120400, 161202, 201202] = (29, 83, 7) . . . [ 33698, 198360, 201202] = (58, 45, 38) . . . [198360, 33698, 201202] = (3469, 7, 3) . . . [145698, 138760, 201202] = (6938, 5, 2) . . . [138760, 145698, 201202] 所以 201202 的勾股數組有 : (a < b < c) ( 33698, 198360, 201202); (112398, 166880, 201202); (120400, 161202, 201202); (138760, 145698, 201202); (201202, 2913960, 2920898); (201202, 12033120, 12034802); (201202, 348984840, 348984898); (201202, 10120561200, 10120561202) 八組.

其他解答:D1B39E804036C6BD
arrow
arrow
    創作者介紹
    創作者 rdfvjur 的頭像
    rdfvjur

    rdfvjur的部落格

    rdfvjur 發表在 痞客邦 留言(0) 人氣()