標題:
此文章來自奇摩知識+如有不便請留言告知
數學知識交流---解方程(3)
發問:
(1) 解方程組 x + y + z = 14 x^2 + y^2 + z^2 = 74 x^3 + y^3 + z^3 = 434 z > x > y (2) 解方程組 ( x - 1 ) ( y - 1 ) ( z - 1 ) = 0 ( x + y ) ( x + z ) ( y + z ) = 0 ( x + 1 ) ( y - 1 ) z = 0
最佳解答:
(1) 解: 法1:設方程 p3 + ap2 + bp + c = 0 的三根分別是x, y和z。 根據一元三次方程根與係數的關係,有: x + y + z = -a, xy + yz + zx = b, xyz = -c 那麼x2 + y2 + z2 = (x + y + z)2 - 2(xy + yz + zx) = a2 - 2b, x3 + y3 + z3 = (x + y + z)3 - 3(x+y)(y+z)(z+x) = (x+y+z)3 - 3(-a-x)(-a-y)(-a-z) = (x+y+z)3 + 3a3 + 3(x+y+z)a2 + 3(xy+yz+zx)a + 3xyz = -a3 + 3a3 - 3a3 + 3ab - 3c = 3ab - 3c - a3 由原方程組,得: -a = 14 -------------------(1) a2 - 2b = 74 --------------(2) 3ab - 3c - a3 = 434 --------(3) 由(1),得: a = -14 ------------------(4) 把(4)代入(2),得: (-14)2 - 2b = 74 b = 61 -------------------(5) 把(4)和(5)代入(3),得: 3(-14)(61) - 3c - (-14)3 = 434 c = -84 所以p3 - 14p2 + 61p - 84 = 0 (p-7)(p-4)(p-3) = 0 p1 = 7, p2 = 4, p3 = 3 因為對稱式,所以 a1 = 7, b1 = 4, c1 = 3 a2 = 7, b2 = 3, c2 = 4 a3 = 4, b3 = 7, c3 = 3 a4 = 4, b4 = 3, c4 = 7 a5 = 3, b5 = 7, c5 = 4 a6 = 3, b6 = 4, c6 = 7 (2) 解: 2011-06-07 18:42:34 補充: (1) x1 = 7, y1 = 4, z1 = 3 x2 = 7, y2 = 3, z2 = 4 x3 = 4, y3 = 7, z3 = 3 x4 = 4, y4 = 3, z4 = 7 x5 = 3, y5 = 7, z5 = 4 x6 = 3, y6 = 4, z6 = 7 2011-06-07 19:03:01 補充: (2) 解: ( x - 1 ) ( y - 1 ) ( z - 1 ) = 0 -----(1) ( x + y ) ( x + z ) ( y + z ) = 0 ---(2) ( x + 1 ) ( y - 1 ) z = 0 -------(3) 由(1),得: x = 1 ----(a) 或 y = 1 ----(b) 或 z = 1 ----(c) 由(2),得: x = -y ----(d) 或 x = -z ----(e) 或 y = -z ----(f) 由(3),得: x = -1 -----(g) 或 y = 1 -----(h) 或 z = 0 ----(i) 2011-06-07 19:18:02 補充: 解方程組(a), (d), (g),無解 解方程組(a), (d), (h),無解 解方程組(a), (d), (i),得x=1, y=-1, z=0 解方程組(a), (e), (g),無解 解方程組(a), (e), (h),得x=1, y=1, z=-1 解方程組(a), (e), (i),無解 2011-06-07 19:31:15 補充: 解方程組(a), (f), (g),無解 解方程組(a), (f), (h),得x=1, y=1, z=-1 解方程組(a), (f), (i),得x=1, y=0, z=0 2011-06-07 19:39:21 補充: (b), (d), (g),x=-1, y=1, z無限解 (b), (d), (h),x=-1, y=1, z無限解 (b), (d), (i),x=-1, y=1, z=0 (b), (e), (g),x=-1, y=1, z=1 (b), (e), (h),x無限解, y=1, z無限解 (b), (e), (i),x=0, y=1, z=0 2011-06-07 19:42:29 補充: (b), (f), (g),x=-1, y=1, z=-1 (b), (f), (h),x無限解, y=1, z=-1 (b), (f), (i),無解 (c), (d), (g),x=-1, y=1, z=1 (c), (d), (h),x=-1, y=1, z=1 (c), (d), (i),無解 2011-06-07 19:52:51 補充: (c), (e), (g),x=-1, y無限解, z=1 (c), (e), (h),x=-1, y=1, z=1 (c), (e), (i),無解 (c), (f), (g),x=-1, y=-1, z=1 (c), (f), (h),無解 (c), (f), (i),無解 2011-06-07 19:58:13 補充: 綜上,此題有無限解也。 第一題另解: x + y + z = 14 --------(1) x2 + y2 + z2 = 74 --(2) x^3 + y^3 + z^3 = 434--(3) (1)2 - (2) ,得: xy + yz + zx = 61 --(4) (2) x (1) - (3),得: xy^2 + xz^2 + yz^2 + yx^2 + zx^2 + zy^2 = 602 --(5) 把x = 14 - y - z分別代入(4)和(5)中,得方程組(6)和(7),並解之,得解六組,但由於z>x>y,所以解只有一組:x = 4, y = 3, z = 7. 2011-06-07 19:58:32 補充: 請看意見。
其他解答:
留言列表